70 research outputs found

    Melanopsin Retinal Ganglion Cells in Patiens with Leber Hereditary Optic Neuropathy: an fMRI Study of Brain Activations under Monochromatic Light Stimulations

    Get PDF
    The current PhD thesis focused on a project that investigated brain responses to monochromatic light stimulation, as assessed by functional magnetic resonance imaging (fMRI), in a population of patients with Leber's hereditary optic neuropathy (LHON). In particular, the aim was to explore a possible role of melanopsin retinal ganglion cells (mRGCs) in visual processes and to assess their role in modulating brain responses during cognitive tasks, as in LHON patients it has been shown that mRGCs are relatively spared despite the general RGCs degeneration. Eleven LHON patients, and eleven matched healthy controls, underwent an fMRI protocol (1.5T MR scanner) that included purely visual stimulation and the combination n of a sustained attention task and light stimulation, both with blue (480nm) and red (620nm) light exposures of equivalent photon flux (5x1013ph cm−2s−1). Overall, lower activations of primary visual cortex in response to purely visual stimuli were observed in LHON compared to healthy subjects, and this is in line with the disease. When considering sustained brain response to monochromatic light stimuli (of 10 and 50s of duration), a higher cortical activity was found in LHON in response to blue rather than to red light, and only when considering blue light no differences between the two groups were observed. Moreover, a prominent modulation of brain responses to a cognitive sustained attention task was found under blue light exposure compared to the red one, both in cortical and subcortical areas. These results provide support to the relatively new hypothesis of melanopsin role in visual processes, and they give a confirmation of the maintained functionality of mRGCs in modulating brain activity during cognitive engagement for LHON patients, as it was previously shown for healthy subjects

    Hand classification of fMRI ICA noise components

    Get PDF
    We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets

    Epigenomic and somatic mutations of pituitary tumors with clinical and pathological correlations in 111 patients

    Get PDF
    Objective To profile clinically non-aggressive and aggressive pituitary adenomas (PAs)/pituitary neuroendocrine tumours (PitNETs) and pituitary carcinomas for somatic mutations and epigenetic alterations of genes involved in cell proliferation/differentiation, microRNAs (miRNA)/long noncoding RNA (LncRNA)-post-transcriptional regulators and therapy targets. Design Retrospective observational study. Patients and Measurements A total of 64 non-aggressive and 41 aggressive PAs/PitNETs and 6 pituitary carcinomas treated by endoscopic surgery with >= 1-year follow-up were included. Somatic mutations of 17 genes and DNA methylation of 22 genes were assessed. Ten normal pituitaries were used as control. Results We found at least one mutation in 17 tumours, including 6/64 non-aggressive, 10/41 aggressive PAs/PitNETs, and 1/6 pituitary carcinoma. AIP (N = 6) was the most frequently mutated gene, followed by NOTCH (4), and TP53 (3). Hypermethylation of PARP15, LINC00599, ZAP70 was more common in aggressive than non-aggressive PAs/PITNETs (p < .05). Lower levels of methylation of AIP, GNAS and PDCD1 were detected in aggressive PAs/PITNETs than non-aggressive ones (p < .05). For X-linked genes, males presented higher level of methylation of FLNA, UXT and MAGE family (MAGEA11, MAGEA1, MAGEC2) genes in aggressive vs. non-aggressive PAs/PITNETs (p < .05). In pituitary carcinomas, methylation of autosomal genes PARP15, LINC00599, MIR193 and ZAP70 was higher than in PAs/PITNETs, while X-linked genes methylation level was lower. Conclusions Somatic mutations and methylation levels of genes involved in cell proliferation/differentiation, miRNA/LncRNA-post-transcriptional regulators and targets of antineoplastic therapies are different in non-aggressive and in aggressive PAs/PitNETs. Methylation profile also varies according to gender. Combined genetic-epigenetic analysis, in association with clinico-radiological-pathological data, may be of help in predicting PA/PitNET behaviour

    Lamin A and the LINC complex act as potential tumor suppressors in Ewing Sarcoma

    Get PDF
    Lamin A, a main constituent of the nuclear lamina, is involved in mechanosignaling and cell migration through dynamic interactions with the LINC complex, formed by the nuclear envelope proteins SUN1, SUN2 and the nesprins. Here, we investigated lamin A role in Ewing Sarcoma (EWS), an aggressive bone tumor affecting children and young adults. In patients affected by EWS, we found a significant inverse correlation between LMNA gene expression and tumor aggressiveness. Accordingly, in experimental in vitro models, low lamin A expression correlated with enhanced cell migration and invasiveness and, in vivo, with an increased metastatic load. At the molecular level, this condition was linked to altered expression and anchorage of nuclear envelope proteins and increased nuclear retention of YAP/TAZ, a mechanosignaling effector. Conversely, overexpression of lamin A rescued LINC complex organization, thus reducing YAP/TAZ nuclear recruitment and preventing cell invasiveness. These effects were also obtained through modulation of lamin A maturation by a statin-based pharmacological treatment that further elicited a more differentiated phenotype in EWS cells. These results demonstrate that drugs inducing nuclear envelope remodeling could be exploited to improve therapeutic strategies for EWS

    Relationship of white and gray matter abnormalities to clinical and genetic features in myotonic dystrophy type 1

    Get PDF
    AbstractBackgroundMyotonic dystrophy type 1 (DM1) represents a multisystemic disorder in which diffuse brain white and gray matter alterations related to clinical and genetic features have been described. We aimed to evaluate in the brain of adult patients with DM1 (i) white and gray matter differences, including cortical-subcortical gray matter volume and cortical thickness and (ii) their correlation with clinical disability, global neuropsychological performance and triplet expansion.MethodsWe included 24 adult genetically-confirmed DM1 patients (14 males; age: 38.5±11.8years) and 25 age- and sex-matched healthy controls (14 males; age: 38.5±11.3years) who underwent an identical brain MR protocol including high-resolution 3D T1-weighted, axial T2 FLAIR and DTI sequences. All patients underwent an extensive clinical and neuropsychological evaluation. Voxel-wise analyses of white matter, performed by using Tract Based Spatial Statistics, and of gray matter, with Voxel-based Morphometry and Cortical Thickness, were carried out in order to test for differences between patients with DM1 and healthy controls (p<0.05, corrected). The correlation between MRI measures and clinical-genetic features was also assessed.ResultsPatients with DM1 showed widespread abnormalities of all DTI parameters in the white matter, which were associated with reduced gray matter volume in all brain lobes and thinning in parieto-temporo-occipital cortices, albeit with less extensive cortical alterations when congenital cases were removed from the analyses. White matter alterations correlated with clinical disability, global cognitive performance and triplet expansions.ConclusionIn patients with DM1, the combined smaller overall gray matter volume and white matter alterations seem to be the main morpho-structural substrates of CNS involvement in this condition. The correlation of white matter differences with both clinical and genetic findings lends support to this notion

    Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome

    Get PDF
    Wolfram syndrome (WS) is a recessive multisystem disorder defined by the association of diabetes mellitus and optic atrophy, reminiscent of mitochondrial diseases. The role played by mitochondria remains elusive, with contradictory results on the occurrence of mitochondrial dysfunction. We evaluated 13 recessive WS patients by deep clinical phenotyping, including optical coherence tomography (OCT), serum lactic acid at rest and after standardized exercise, brain Magnetic Resonance Imaging, and brain and muscle Magnetic Resonance Spectroscopy (MRS). Finally, we investigated mitochondrial bioenergetics, network morphology, and calcium handling in patient-derived fibroblasts. Our results do not support a primary mitochondrial dysfunction in WS patients, as suggested by MRS studies, OCT pattern of retinal nerve fiber layer loss, and, in fibroblasts, by mitochondrial bioenergetics and network morphology results. However, we clearly found calcium mishandling between endoplasmic reticulum (ER) and mitochondria, which, under specific metabolic conditions of increased energy requirements and in selected tissue or cell types, may turn into a secondary mitochondrial dysfunction. Critically, we showed that Wolframin (WFS1) protein is enriched at mitochondrial-associated ER membranes and that in patient-derived fibroblasts WFS1 protein is completely absent. These findings support a loss-of-function pathogenic mechanism for missense mutations in WFS1, ultimately leading to defective calcium influx within mitochondria

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF

    Il Futuro della Cybersecurity in Italia: Ambiti Progettuali Strategici

    Get PDF
    • …
    corecore